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Several new implicit schemes for the solution of the compressible Navier–
Stokes equations are presented. These methods are derived from a hierarchy
of average-state approximate solutions to the Riemann problem, ranging
from the Lax–Friedrichs flux to the exact Riemann-solver flux. In contrast
to linearised approximations, these methods will (with certain provisos on
the signal velocities) enforce the entropy condition and preserve positivity
without the need for additional corrections. The hierarchy also encompasses
and explains the origin of many other upwind and centred methods, including
the space-time scheme (due to Chang) and the more recent FORCE scheme
(due to Toro). Based on an analysis of the above hierarchy, attention is
focussed on the development of a new implicit scheme using a positivity-
preserving version of Toro et al.’s HLLC scheme, which is the simplest aver-
age-state solver capable of exactly preserving isolated shock, contact, and
shear waves. Solutions obtained with this method are essentially indistinguish-
able from those produced with an exact Riemann solver, whilst convergence
to the steady state is the most rapid of all the implicit average-stage schemes
considered and directly comparable to that of the unmodified Roe scheme.
A new two-step implicit method is applied to various test cases, including
turbulent flow with shock/boundary-layer interaction. The new time-stepping
scheme is composed of two backward Euler steps, but has twice the conver-
gence rate of the backward Euler scheme and alleviates the convergence
problems that are often experienced when employing compressive limiter
functions. Q 1997 Academic Press

1. INTRODUCTION

Ever since the pioneering work of Godunov [11] there has been a steadily increas-
ing interest in upwind methods for approximating the convective fluxes in the
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Euler and Navier–Stokes equations. Much research into numerical methods for
compressible fluid flow has focussed on the construction of approximate solutions
to the Riemann problem, usually motivated by the fact that exact solutions are
expensive to compute. However, there are two further issues which are probably
equally significant. First, no route has yet been found to successfully incorporate
exact solutions to multidimensional Riemann problems into two- or three-dimen-
sional numerical schemes, and hence, the building blocks of current multidimen-
sional schemes are already linearised approximations. Second, there are obvious
advantages in using implicit schemes when solving stiff differential equations (re-
sulting, for example, from the use of transport models of turbulence). In this case,
a simple closed-form solution for the numerical flux has the advantage of allowing
a rapid evaluation of the analytic Jacobians.

Most of the existing closed-form approximate solutions are capable of giving
good solutions to one-dimensional inviscid flow. As experience has grown, however,
a number of problems have surfaced in more demanding situations, such as in flows
with strong shocks or expansions, or in complex multidimensional flows. Linearised
approximate Riemann solvers, in particular, are building up a steady catalogue of
failings [10, 28, 21]. There are known entropy corrections1 for linearised solvers.
However, whilst some failings are easily cured, entropy corrections usually have
unwanted side-effects, such as rendering the modified solver incapable of recognis-
ing isolated discontinuities, which would otherwise have been its main advantage
in viscous flow. These difficulties have motivated the investigation of a different class
of upwind flux, based on the construction of integral average-state approximations to
the Riemann problem.

The concept of average-state approximations was introduced by Harten, Lax,
and van Leer [14] in 1983, but actually encompasses many earlier schemes. There
is a large hierarchy of numerical fluxes which arise from this approach, all of which
may be applied directly to the Euler equations without the need for additional ad
hoc modifications. Unfortunately, most of these approximations appear to be ill-
suited to the implicit solution of the Navier–Stokes equations. One major problem
stems from the inability of the simpler flux models to exactly preserve an isolated
contact or shear wave. This results in excessive diffusion of boundary layers, yet
also poor convergence rates. There is, therefore, a clear requirement to minimise
the degree of simplification to a level which does not affect the validity of the
underlying physics.

Against this background, much of the present paper is devoted to the construction
of an implicit scheme based on the HLLC Riemann solver of Toro et al. [34], which
contains the most detailed physics of any of the average-stage schemes considered.
It transpires that one cannot construct an unconditionally stable implicit HLLC
scheme under the assumption that all wave speeds are frozen, as is frequently done
in implicit Roe schemes [36–40, 15]. However, by choosing and linearising an
estimate for the contact-wave speed, which enforces the equality of the two star
pressures, an implicit scheme is obtained which is stable up to infinite CFL numbers

1 This terminology is widely used, even where the fault has apparently nothing to do with entropy vio-
lation.
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FIG. 1. Region of integration containing the Riemann fan in Godunov’s method.

and which is distinguished by the most rapid convergence rate of any of the average-
state schemes.

A new two-step time-integration method is developed and applied to various
test cases, including turbulent flow with shock/boundary-layer interaction. This two-
step method requires no additional storage and may be implemented trivially as
two successive backward Euler steps, but has twice the convergence rate of the
basic backward Euler scheme and permits convergence to machine zero in situations
where compressive limiter functions normally cause the convergence of the back-
ward Euler scheme to stagnate.

2. AVERAGE-STATE APPROXIMATE RIEMANN SOLVERS

The initial-value Riemann problem consists of the interaction of the two semi-
infinite states

U(x, 0) 5 HUl if x , 0,

Ur if x $ 0. (1)

The solution is denoted by R(x/t; Ul , Ur ), i.e., depends only on the states Ul ,
Ur and the ratio x/t. The motivation for solving these wave-interaction problems
originated from Godunov’s explicit scheme [11], in which piecewise constant data
was assumed in each mesh cell and the Riemann problem was solved exactly at
the interfaces (see Fig. 1), allowing cell-average values to be updated via an integral
average over the cell:

U n11
i 5

1
Dx

Ei

i21/2
R(x/t, U n

i21 , U n
i ) dx 1

1
Dx

Ei11/2

i
R(x/t, U n

i , U n
i11 ) dx. (2)

Since the conservation laws

R[U dx 2 F(U)dt] 5 0 (3)
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must be satisfied over an arbitrary rectangle in x, t space and since the exact Riemann
solution satisfies these conservation laws, the above integral can be evaluated over
control volume ABCD in Fig. 1 to give the equivalent Godunov update:

U n11
i 5 U n

i 2
Dt
Dx

hF [R(0, U n
i21 , U n

i )] 2 F [R(0, U n
i , U n

i11)]j, (4)

where R(0, Ul , Ur ) is the solution to the Riemann problem at the interface between
states Ul and Ur . Any Godunov-type scheme can be expressed in conservation
form, with a numerical flux, Flr(Ul , Ur ), determined by applying the integral conser-
vation law (3) over either rectangle (i 2 As, i) 3 (0, Dt) or, equivalently, rectangle
(i, i 1 As) 3 (0, Dt). The left-hand integral gives

Flr 5 Fl 2
1
Dt

Ei21/2

i21
w(x/Dt ; Ul, Ur )dx 1

Dx
2Dt

Ul , (5)

where w(x/t ; Ui21 , Ui ) is either the exact or approximate solution to the Rie-
mann problem.

Harten et al. [14] proposed various simplifications to the internal structure of the
Riemann fan by taking integral averages of the conserved variables over sections
of the fan. The most elaborate solver suggested by Harten et al. [14] is a two-state
approximation in which two integral averages are computed, one from the left-
most acoustic wave to the contact and one from the contact to the right-most acoustic
wave; see Fig. 2. The details of this scheme are rather cumbersome. However, Toro
et al. [34] showed that a significant simplification could be made by assuming the
particle velocity to be constant across the Riemann fan. Moreover, Batten et al.
[4] have shown that, with a suitable choice of all wave speeds, Toro et al.’s two-
state HLLC solver resolves isolated shock and contact/shear waves exactly and is
positively conservative in the definition of Einfeldt et al. [10], which implies that
initially positive densities and pressures are preserved in the internal structure of
the Riemann fan. This version of the HLLC flux is defined by

FHLLC 55
Fl if SL . 0

F(U*l ) if SL # 0 , SM

F(U*r ) if SM # 0 # SR

Fr if SR , 0, (6)

where

U*l 53
r*l

(ru)*l

(rv)*l

(rw)*l

e*l

45 Vl3
rl (SL 2 ql)

(SL 2 ql)(ru)l 1 (p* 2 pl )nx

(SL 2 ql)(rv)l 1 (p* 2 pl )ny

(SL 2 ql)(rw)l 1 (p* 2 pl )nz

(SL 2 ql)el 2 pl ql 1 p*SM

4,

(7)
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U*r 53
r*r

(ru)*r

(rv)*r

(rw)*r

e*r

45 Vr3
rr (SR 2 qr)

(SR 2 qr)(ru)r 1 (p* 2 pr )nx

(SR 2 qr)(rv)r 1 (p* 2 pr )ny

(SR 2 qr)(rw)r 1 (p* 2 pr )nz

(SR 2 qr)er 2 pr qr 1 p*SM

4,

(8)

F*l ; F(U*l ) 53
r*l SM

(ru)*l SM 1 p*nx

(rv)*l SM 1 p*ny

(rw)*l SM 1 p*nz

(e*l 1 p*)SM

4, F*r ; F(U*r ) 53
r*r SM

(ru)*r SM 1 p*nx

(rv)*r SM 1 p*ny

(rw)*r SM 1 p*nz

(e*r 1 p*)SM

4,

(9)

Vl ; (SL 2 Sm )21, Vr ; (SR 2 SM)21, (10)

p* 5 rl (ql 2 SL)(ql 2 SM) 1 pl 5 rr (qr 2 SR )(qr 2 SM ) 1 pr , (11)

and q ; unx 1 vny 1 wnz , with [nx , ny , nz ]T being the unit vector normal to the
interface. SM is taken from Batten et al. [4]:

SM 5
rr qr(SR 2 qr ) 2 rlql(SL 2 ql) 1 pl 2 pr

rr (SR 2 qr ) 2 rl(SL 2 ql)
, (12)

and SL , SR are taken from Einfeldt et al. [10]:

SL 5 min[l1(Ul), l1 (U Roe)],
(13)SR 5 max[lm(URoe ), lm (U r)],

with l1(U Roe) and lm (U Roe) being the smallest and largest eigenvalues of the Roe
matrix [30].

In some situations, the estimates of the signal velocities, SL, SM, and SR, are not
critical. Specific suggestions were made in [7, 10, 34] of how to estimate the acoustic
wave speeds, and their performance is observed to be similar in test cases which
involve only weak wave interaction. However, differences do arise in more de-
manding situations. A rather severe example would be the following compression
shock-tube problem:

1
r

u

p
2

(x,0)

5 H(1, 25, 1/c)T, if x , 0,

(1, 225, 1/c)T, otherwise, (14)

where the left (x 5 20.5) and right (x 5 0.5) ends of the shock-tube correspond
to solid walls. Figure 3 shows results for this case at t 5 0.01, computed using a
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first-order scheme with 400 grid points and a CFL number of 0.5 (the exact solution
is shown as a solid line). The bursting membrane causes two identical gases to
move towards each other at Mach 25, whilst the inward moving rarefaction waves
leave, theoretically, vacuum conditions near the two ends of the tube. The original
HLLC solver, using any of the wave-speed estimates suggested by Toro et al. [34]
or Davis [7], fails in the first few time steps, as do Roe’s scheme, Osher’s scheme,
and many of the popular flux–vector splitting schemes. All the average-state fluxes
discussed in this paper are capable of giving quite respectable solutions to the above
test case, using wave speeds (13) and, where appropriate, (12). Whilst there may
be some questions regarding the application of the Euler equations to a flow where
the continuum assumption no longer applies, in practice, the approximation of the
vacuum as a state with arbitrarily small pressures and densities seems to give
perfectly adequate predictions [25], provided the numerical scheme can cope with
such conditions.

Although most applications of engineering interest are not so severe, vacuum or
near-vacuum conditions can often occur in initial transients. Furthermore, linearised
approximate Riemann solvers are known to fail with negative pressures well before
the vacuum state is reached [10]. For the Euler equations, linearised Riemann
solvers, such as those due to Roe [30], Toro [32], and Eberle [9], can technically be
considered as special cases of the two-state HLL approach, but with one important
distinction. In these linearised solvers, all wave speeds are obtained from a single
average state—for example, an arithmetic or a square-root average. Wave speeds
determined in this manner will, in general, underestimate the true expansion-wave
velocity, and in Eulerian schemes this is what leads to negative internal energies
and expansion shocks.

One other scheme known to be able to resolve the severe transients of test case
(14) is the AUSM scheme of Liou and Steffen [21]. Quite a number of different
AUSM schemes have now been proposed, but none of these fall within the current
hierarchy of solvers, since the AUSM flux is not derived from any integral-average
solution, U*, consistent with the conservation laws (3).

In theory, the average-state concept can be advanced further by the addition of
more waves and states, as indicated in Fig. 2. For example, by considering any
expansion wave as a single averaged state, the left and right star states on either
side of the contact wave become identical to those in the exact Riemann solution.
In some algorithms, such as front-tracking, the expansion wave is deliberately
divided further into many small integral-average states so that these can be interpre-
ted and propagated as discontinous fronts. The upper limit of the hierarchy is, of
course, the exact Riemann solution, but in recent years there has been much
attention focussed on simplified average-state schemes that prove to be equally
robust when applied to the Euler equations. One such example is the single-state
HLL scheme of Harten et al. [14] (see Fig. 2):

FHLL 5 t1 Fr 1 t2 Fl 2 t3 (Ur 2 Ul ), (15)

with

t1 5
min(SR , 0) 2 min(0, SL )

SR 2 SL
, t2 5 1 2 t1, t3 5

SR uSL u 2 SL uSR u
2(SR 2 SL)

, (16)
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FIG. 2. The hierarchy of average-state Riemann solvers.

where SL and SR may again be taken from (13). The HLL flux (15) can resolve
isolated shocks as well as an exact Riemann solver and has also been shown to be
positively conservative [10] using wave-speed estimates (13). However, it cannot
resolve isolated contact/shear waves exactly, and this weakness can be significant
for Navier–Stokes computations.

Using algorithm (13) to estimate upper and lower bounds on the true maximum
signal speed, lm , one can set SR 5 ulmu and SL 5 2SR in the HLL flux formula
(15) to arrive at the Rusanov flux (see Davis [7]):

FRusanov 5
1
2

(Fl 1 Fr ) 2
ulmu

2
(Ur 2 Ul). (17)

The Rusanov flux has been, and possibly still is, the most popular approach to
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FIG. 3. Mach 25 compression shock-tube problem, 400 grid points, CFL 5 0.5.

solving compressible fluid-flow problems and forms the basis of virtually all artificial-
viscosity methods. The Roe flux (see Roe [30] and Roe and Pike [31]),

FRoe 5
1
2

(Fl 1 Fr ) 2
1
2

RLR21 (Ur 2 Ul ) (18)

with L 5 Diag[ul1u, ul2u, ul3u], also reduces to (17) if all signal velocities are set equal
to ulmu, although it should be noted that the maximum modulus eigenvalue of the
Roe matrix may underestimate the true ulmu. Davis [7] has pointed out that the
CFL restriction obviates the need to estimate signal velocities through the assump-
tion ulmu 5 Dx/D t, in which case (15) reduces to the Lax–Friedrichs flux:

FLF 5
1
2

(Fl 1 Fr) 2
Dx
2Dt

(Ur 2 Ul). (19)

Whilst being attractively simple, the Lax–Friedrichs flux is extremely dissipative
and produces solutions which are dramatically worse than those computed with the
Rusanov flux. Figures 5 and 6 show solutions to Harten’s shock-tube problem
computed at t 5 0.1 with various first- and second-order schemes on a uniform
one-dimensional mesh of 100 grid points. The results demonstrate that the poor
resolution of the Lax–Friedrichs scheme persists even if one uses higher-order
methods.

Recently, Chang [6] and Toro [33] have produced two surprisingly accurate shock-
capturing schemes that operate without any apparent use of upwinding, Riemann
solvers, or even signal velocities. The basic ingredient in both Chang’s ‘‘space-time’’
scheme [6] and Toro’s ‘‘FORCE’’ scheme [33] is an average-state computed at a
location staggered in time and space, as indicated in Fig. 4. Toro [33] suggests using
the staggered mesh at the half-time level purely in order to advance the solution
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FIG. 4. Staggered mesh used in space-time and FORCE schemes.

to the full time level on the principal mesh, whilst Chang [6] makes no specific
distinction between full and half-time levels.

The initial step in the FORCE method is to integrate the conservation laws (3)
around the rectangular region ABCD in Fig. 4 in order to produce an integral
average value at a half-time level, for example,

U n11/2
i21/2 5

1
2

(U n
i21 1 U n

i ) 1
D t

2Dx
(F n

i21 2 F n
i ). (20)

Once U n11/2
i21/2 and U n11/2

i11/2 are known, an analogous procedure applied to the staggered
grid gives

U n11
i 5

1
2

(U n11/2
i21/2 1 U n11/2

i11/2 ) 1
D t

2Dx
(F n11/2

i21/2 2 F n11/2
i11/2 ). (21)

FIG. 5. First-order nonstaggered schemes applied to Harten’s shock-tube problem, 100 grid points,
CFL 5 0.5, t 5 0.1.
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FIG. 6. Second-order nonstaggered Runge–Kutta schemes applied to Harten’s shock-tube problem,
100 grid points, CFL 5 0.5, t 5 0.1.

This update can be rewritten in terms of a conservative Godunov-type scheme (4)
with the numerical flux,

F FORCE
i21/2 5

1
2

hF LF
i21/2 1 F RI

i21/2j,

which is simply an arithmetic average of the Lax–Friedrichs (F LF) and Richtmyer
(F RI) fluxes, where F LF is given by (19) and

F RI
i21/2 5 F(U n11/2

i21/2 ),

with U n11/2
i21/2 given by (20). Toro [33] demonstrates that the FORCE scheme applied

to the linear advection equation is monotone, provided the CFL number is less
than unity.

Chang [6] does not consider U as constant within each cell. Instead, U is recon-
structed such that within any ‘‘solution element,’’ (i, n), the vector U is taken as

U 5 U n
i 1 (Ux )n

i (x 2 xi) 1 (Ut )n
i (t 2 tn ). (22)

The solution element (i, n) is considered to range from [i 2 As, i 1 As] and [n 2 As,
n 1 As], and, in general, U may be discontinuous at the boundaries of the solution
elements. The philosophy of Chang’s scheme [6] is to treat space and time equally.
Hence, fluxes across vertical lines in Fig. 4 (spatial fluxes) are treated in an identical
fashion to fluxes across horizonal lines (temporal fluxes). The scheme is, again,
developed by exploiting the fact that the integral form of the conservation law (3)
must hold over an arbitrary union of ‘‘conservation elements.’’ For example, in
Fig. 4:
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E
AFED

[U dx 2 F dt] 5 0, (23)

E
FBCE

[U dx 2 F dt] 5 0, (24)

E
ABCD

[U dx 2 F dt] 5 0. (25)

The governing differential equations are assumed to hold over every solution
element. For example, in the case of the one-dimensional Euler equations,
(Ut )n

i 5 2(Fx )n
i . Setting Fx 5 (­F/­U)Ux , Ft 5 (­F/­U)Ut , Fx , and, hence, Ut and

Ft can be expressed as functions of U and Ux . The only unknowns in Eqs. (23) to
(25) are, therefore, the values of U and Ux at the (i 2 As, n 1 As) solution element.
Since Eqs. (23) plus (24) imply (25), this leaves two equations and two unknowns.
Equation (25) may be solved directly for the discrete solution vector at the next
half-time level, giving

U n11/2
i21/2 5

1
2

(U n
i21 1 U n

i ) 1
D t

2Dx
(Fi21 2 Fi ) 1

(26)
Dx
8

[(Ux )n
i21 2 (Ux )n

i ] 1
Dt 2

8Dx FS­F
­U

UtDn

i21
2 S­F

­U
UtDn

i
G.

Substituting (26) into either (23) or (24) determines (Ux )n11/2
i21/2 . Note that due to the

definition of the function U by (22) over the solution element, no interpolation or
extrapolation is needed to define the interface fluxes.

The basic space-time scheme described above is neutrally stable and free from
dissipation [6]. As a result, the scheme is unsuitable for problems involving disconti-
nuities, such as shocks and contact waves. For this reason, Chang [6] introduces a
weighted average form of the derivatives to suppress numerical oscillations:

(qx )n
i 5 (q w

x )n
i 1 (2« 2 1) [(q9i11/2 2 q9i21/2)/Dx 2 (qx)n

i ], (27)

where

(q w
x )n

i 5
uauab 1 ubuaa

uaua 1 ubua
(28)

and a is some positive integer which controls the weighted averaging of the left
and right slopes, a and b, defined as

a 5 (q n
i 2 q 9i21/2)/(Dx/2), b 5 (q 9i11/2 2 q n

i )/(Dx/2),

and

q 9i61/2 5 q n21/2
i61/2 1 (qt)n21/2

i61/2
D t
2

. (29)
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FIG. 7. Space-time scheme and related methods applied to Harten’s shock-tube problem, 100 grid
points, CFL 5 0.5, t 5 0.1.

Chang [6] refers to the space-time scheme with the components of Ux, defined
via (27), as the ‘‘a 2 « scheme,’’ in which « is a parameter which controls the
level of artificial dissipation. At least for one-dimensional calculations of the Euler
equations, it appears that the solution of evolution equations for the derivatives is
an unnecessary overhead, since derivatives obtained via Eq. (23) or (24) are over-
written by any limiter function such as (28) which is subsequently applied in an
attempt to preserve monotonicity (note that this scheme is not strictly bounded as
there is no guarantee on the monotonicity of the projected solution (29)). Setting
« 5 0.5 and a 5 1, (27) simply reduces to the well-known harmonic-mean slope
of van Leer. Using (28) to define each component of Ux , the space-time scheme
no longer requires any evolution equation for the spatial derivatives.2 The result
(see Fig. 7) is quite remarkable, considering that the internal details of the Riemann
fan are never used and, indeed, are never needed, because the entire Riemann fan
is contained within the region of integration.

Part of the reason for this sharp resolution is that the projection (29) makes very
efficient use of the extra level of storage. Whilst conventional two-step methods
use co-located storage for both levels of data, the two levels of storage in the space-
time scheme are staggered in such a way that each provides a type of subcell
resolution for the other, since (29) provides solution data between current mesh
values. Examining data at only one mesh level in the space-time solution (particu-
larly at steady-state!) gives the impression of very sharply captured discontinuities.
In fact, solutions produced with this scheme are broadly comparable to conventional
MUSCL schemes which use twice the number of mesh points, but with every other
mesh point then omitted from the output.

2 The scheme then also loses its special property of space-time invariance [6]. In practice, this property
is lost with the application of any limiter-like device which suppresses numerical oscillations.
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In the case where the local gradients within a solution element are zero (the
likely effect of employing the slope-limiter (28) near a discontinuity), the evolution
equation (26) reduces to (20). Repeating this procedure on the staggered mesh,
one can see that the underlying monotone method in the space-time scheme is
exactly that of the FORCE scheme.

Whilst mesh staggering does not present much difficulty in one-dimensional
problems, in multidimensional calculations it can significantly increase programming
overheads. Therefore, this integral-averaging procedure in the first-order space-
time or FORCE scheme is re-interpreted for a conventional, nonstaggered mesh,
by taking an integral over half of the rectangular domain containing the Riemann
fan (see Fig. 1) to construct an average-state approximation to the interface flux
via Harten and Lax’s formula (5). Integrating (3) over rectangle ABCD in Fig. 1 gives

u n11
i21/2 5

1
2

(Ur 1 Ul ) 2
D t
Dx

(Fr 2 Fl). (30)

Substituting (30) into (5) gives

FHLF 5
1
2

(Fl 1 Fr ) 2
Dx
4D t

(Ur 2 Ul ). (31)

The above numerical flux is readily recognised as being associated with the average-
state Riemann solvers. Thus, flux (31) is just the HLL flux (15), with SR 5 Dx/2D t
and SL 5 2SR , which corresponds to maximum and minimum bounds for the signal
velocities within a CFL restriction of 0.5. Since the dissipation term in this flux is
exactly one-half of that in the Lax–Friedrichs flux, we refer to (31) as the ‘‘half-
Lax–Friedrichs’’ flux or HLF.

Although signal velocities do not appear directly in the HLF, FORCE, or space-
time schemes, one can see that bounds are obtained indirectly through the estimate
of D t. Therefore, the choice of time-step is expected to be highly influential on any
transient or steady-state solution. In particular, the dissipation in these methods
vanishes as D t R y, but tends to infinity as D t R 0. Required conditions for
positivity on the Lax–Friedrichs/HLF schemes can be demonstrated on the linear,
scalar wave equation,

ut 1 aux 5 0,

where a is a constant (a . 0), and it is assumed that u n
i $ 0 ;i, and D t . 0.

Substituting the Lax–Friedrichs/HLF flux into the forward Euler scheme gives

u n11
i 5 u n

i 2
D t
Dx H1

2
[ f(u n

i ) 1 f(u n
i11)] 2

bDx
2D t

(u n
i11 2 u n

i )

2
1
2

[ f(u n
i21) 1 f(u n

i )] 1
bDx
2D t

(u n
i 2 u n

i21)J,

where b 5 1 or As, corresponding to the Lax–Friedrichs or HLF fluxes, respectively.
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This can be rearranged to give

u n11
i 5 u n

i 2
aD t
2Dx

(u n
i11 2 u n

i21) 1
b
2

(u n
i11 2 2u n

i 1 u n
i21) $

u n
i11

2 Sb 2
aD t
DxD.

Hence, u n11 $ 0, provided the CFL number, aD t/Dx , b.
Substituting the Lax–Friedrichs/HLF flux into the backward Euler scheme gives

(1 1 b)u n11
i 2

u n11
i11

2 Fb 2
aD t
DxG2

u n11
i21

2 Fb 1
aD t
DxG5 u n

i .

This forms a diagonally dominant matrix whose diagonal and off-diagonal elements
are respectively positive and negative, provided aD t/Dx , b. Thus, the implicit
Lax–Friedrichs and HLF schemes are positivity-preserving only up to the same
CFL numbers as their explicit counterparts.

Implicit schemes based directly on the Lax–Friedrichs or HLF fluxes are not,
therefore, expected to be of much practical use. One way around this difficulty
could be to compute and freeze the dissipation parameter in the HLF flux, D t/Dx,
where D t would be the value obtained assuming a CFL restriction of 0.5, and then
to use a different, larger, time-step in the backward Euler scheme itself. This would,
at best, simply amount to an application of the implicit Rusanov scheme. Within
the required CFL restriction, however, explicit inviscid-flow calculations using the
HLF flux show a signficant improvement over those using Lax–Friedrichs. Figure
6, shows results using the HLF flux at a CFL number of 0.5, with the van Leer
limiter (corresponding to slope limiter (28) with a 5 1, a 5 (qi 2 qi21)/Dx and
b 5 (qi11 2 qi)/Dx) used to compute the limited slope, L, in the TVD Runge–Kutta
time-stepping scheme,

Ui 5 U n
i 2

D t
Dx Ok F(U n

i 1 dik.L n
i , U n

k 1 dki.L n
k), (32)

U n11
i 5

1
2 SU n

i 1 Ui 2
D t
Dx Ok F(Ui 1 dik.Li , Uk 1 dki.Lk)D, (33)

in which k corresponds to i 6 1. Figure 6 shows that the HLF results are comparable
to those of the other nonstaggered-grid methods based on the HLLC, HLL, Rusanov
or exact Riemann-solver fluxes. Comparisons with the space-time and related
schemes are shown in Fig. 7.

It must be reiterated, that in most practical applications, one cannot escape the
need to compute at least one signal velocity, because an explicit scheme applied
on a fixed mesh requires the choice of D t. These simple fluxes are discussed here
principally to identify their connection to the present hierarchy. Whilst they may
perform well for simple one-dimensional Euler flows, their use is not recommended,
in general, since they are always less accurate than, and offer little advantage in
computational economy over the Rusanov flux.3

3 The Rusanov flux has seen renewed interest recently, appearing under the aliases ‘‘local Lax–
Friedrichs flux’’ (see Yee [39]) and ‘‘scalar diffusive flux’’ (see Jameson [17]).
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FIG. 8. First- (left) and second-order (right) nonstaggered Runge–Kutta schemes applied to station-
ary contact problem.

Figures 5 and 6 show that the resolution steadily improves as one moves up the
hierarchy of solvers by introducing more waves into the flux model. The simplest
flux models estimate only one wave speed, namely that which has the maximum
signal speed, and this is used to scale the dissipation applied to all waves. These
simple fluxes cannot recognise a wave moving with the u 2 c characteristic (u .

0), since the two states on either side of the slowest-moving acoustic wave in
the Riemann fan are averaged, causing upstream-moving or stationary shocks to
dissipate. Such schemes will also cause contact waves to diffuse indefinitely, or until
checked by boundary conditions or some compressive limiter in the higher-order
convective flux, as demonstrated in Fig. 8. In the HLL flux, the other acoustic wave
is introduced, and Fig. 5 shows the resulting improvement with respect to the
Rusanov and HLF fluxes. Note, however, that contact waves are again diffused
indefinitely, and solutions obtained with this scheme in Fig. 8 are indistinguishable
from those computed with the Rusanov method. Introducing the contact wave
results in a two-state solver, such as HLLC, in which isolated contact or shear waves
remain perfectly resolved for all time. In Figs. 5 and 8, the HLLC solutions are
indistinguishable from those of the exact Riemann solver.

The importance of preserving isolated contact/shear waves in Navier–Stokes
computations can be illustrated by considering a simple boundary layer, where the
normal-to-wall pressure gradient and velocity component are nearly zero and the
grid is roughly aligned with the wall. Substituting pl 5 pr 5 p and ql 5 qr 5 0 into
(12) and then into (6), shows that the only nonzero component of the normal-to-
wall HLLC flux is the pressure, p. Since the pressure is constant through the
boundary layer, it is only the physical diffusion terms which play any role in the
flux-balance contribution from the normal-to-wall direction. On the other hand,
the HLL, Rusanov, HLF/Lax–Friedrichs, FORCE, and space-time schemes all
generate an additional, spurious, convective flux contribution in any property which
varies across the boundary layer—for example, shear component of velocity, tem-
perature or density. These schemes will continue diffusing the boundary-layer in-
definitely, or until checked by either boundary conditions or some nonlinear effect
such as a flux-limiter. Although this diffusion can be reduced to a degree by the
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use of compressive limiters, it is unwise to rely on such devices, because one
cannot guarantee that the limiter will exactly compensate for the artificial diffusion
introduced by the inviscid flux. It is interesting to note that if a scheme does resolve
the isolated contact/shear problem exactly, then the use of limiters in the normal-
to-wall direction has no effect whatsoever.

In the following sections we consider the application of the above fluxes to the
implicit solution of the compressible Navier–Stokes equations.

3. A HIERARCHY OF IMPLICIT METHODS

To derive our implicit schemes, inviscid and viscous fluxes are approximated at
the new time level via the truncated Taylor expansion,

F n11 P F n 1 S­F
­UDu

dU.

Throughout the remainder of the paper, the superscript ( )n will be dropped from
the Jacobians whenever this does not cause ambiguity. The implicit semi-discretisa-
tion of the mass-averaged Navier–Stokes equations can be written

F J
D t

I 2 O
k
S­F v

­U
2

­F c

­UD2 J
­St

­UG dU 5 O
k

(F v 2 F c)n 1 JS n
t , (34)

from which U, the vector of conserved variables, is updated via U n11 5 U n 1 dU.

In the above, J is the cell volume, St are the source terms (arising, for example,
from turbulence-model transport equations), and ok implies a sum over all faces
of the control volume. F c and F v are the convective- and diffusive-flux vectors, with
­F c/­U and ­F v/­U denoting their respective Jacobians.

As a preliminary step, a well-known implicit form of the Roe [30] flux can be
obtained by assuming the Roe Jacobian locally frozen (see, for example, Yee [37,
38, 40] or Huang and Coakley [15]), giving

F n11
Roe 55

F n
l 1

­Fl

­Ul
dUl , if ln

1 . 0,

F n
Roe 1

1
2F­Fl

­Ul
dUl 1

­Fr

­Ur
dUr 2 RuLuR21(dUr 2 dUl )G, if ln

1 # 0 # ln
3,

F n
r 1

­Fr

­Ur
dUr , if ln

3 , 0. (35)

Strictly, in the subsonic case, there are two terms missing from the above linearisa-
tion, corresponding to
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FIG. 9. Mach contours for Mach 1.4 circular-arc bump flow (HLLC).

2
1
2

­

­Ul
([RuLuR 21][U n

r 2 U n
l ]) dUl 2

1
2

­

­Ur
([RuLuR 21][U n

r 2 U n
l ]) dUr . (36)

Flux (35) with the addition of terms (36) will be referred to as the fully linearised
Roe flux. These additional terms may be obtained via repeated application of the
product rule, which involves some tedious algebra, but no additional square roots.

Since all these upwind fluxes are only piece-wise differentiable, neither of the
above two linearisations will be valid in situations where the wave speeds vary
dramatically over one time-step. Eigenvalues can change sign within a single step
near sonic points or regions of reverse-flow, and thus it usually proves necessary
to start calculations with a CFL number close to unity and to increase D t substantially
only after the wave speeds start to settle down. This is true irrespective of whether
wave speeds (and eigenvectors) are frozen or linearised.

Convergence histories comparing the above two linearisations in supersonic and
subsonic channel flow are shown in Figs. 10 and 15. A slight improvement in
convergence rate is observed with the fully linearised form. However, the cost per
iteration increases by more than a factor of two. More complex applications could
obviously be envisaged, which are so expensive per step that the number of iterations
becomes the most important factor. However, within the present numerical frame-
work and for the problems considered herein, there appears to be no benefit gained
from the use of the fully linearised form.

In view of this, the strategy adopted in deriving implicit average-state schemes has
been to construct the simplest possible method which gives (linear) unconditional

FIG. 10. Convergence histories of first-order backward Euler schemes on supersonic bump flow.
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stability. If all wave speeds can be frozen in the construction of the relevant Jacobi-
ans, it may be expected that the average-state schemes will result in some extremely
simple implicit methods. HLLC turns out to be one exception to this rule. Through
the expressions derived from the Rankine–Hugoniot relations (11), the contact-
wave speed, SM (here interpreted also as the average particle velocity between the
two acoustic waves), is used to determine both left and right star pressures. The
observation that pressure is not discontinuous across the contact wave, i.e.,

p*l 5 rl (Sl 2 ql)(SM 2 ql) 1 pl 5 p*, (37)

p*r 5 rr (SR 2 qr)(SM 2 qr) 1 pr 5 p*, (38)

is enforced only by the choice of contact-wave speed (12). In a linearised implicit
scheme with SM frozen, a disturbance in Ur will cause a disturbance in p*r (38), but
will have no effect on p*l (37). This would imply that, in subsonic flow, downstream
disturbances would have no effect whatsoever on the flow upstream. An implicit
HLLC scheme with frozen wave speeds could not, therefore, propagate an acoustic
wave upstream in subsonic flow any faster than an explicit method. Therefore, the
star pressures must be allowed to respond to both upstream and downstream
perturbations; hence the expression for the contact-wave velocity must be linearised.

The implicit form of the HLLC flux (6) is then given by

F n11
HLLC 5

F n
l 1

­Fl

­Ul
dUl, if S n

L . 0,

(F*l )n 1
­F*l
­Ul

dUl 1
­F*l
­Ur

dUr, if S n
L # 0 , S n

M,

(F*r )n 1
­F*r
­Ul

dUl 1
­F*r
­Ur

dUr, if S n
M # 0 # S n

R,

F n
r 1

­Fr

­Ur
dUr, if S n

R , 0. (39)






The supersonic-flow case is again trivial. In the subsonic case, the relevant HLLC
Jacobians are given by

­F*l
­Ul

5

S­r*l
­Ul

DT

S n
M 1 S­SM

­Ul
DT

r*l

S­(ru)*l
­Ul

DT

S n
M 1 S­SM

­Ul
DT

(ru)*l 1 S­p*
­Ul

DT

nx

S­(rv)*l
­Ul

DT

S n
M 1 S­SM

­Ul
DT

(rv)*l 1 S­p*
­Ul

DT

ny

S­(rw)*l
­Ul

DT

S n
M 1 S­SM

­Ul
DT

(rw)*l 1 S­p*
­Ul

DT

nz

S­e*l
­Ul

1
­p*
­Ul

DT

S n
M 1 (e*l 1 p*) S­SM

­Ul
DT

(40)
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and

­F*l
­Ur

5

S­r*l
­Ur

DT

S n
M 1 S­SM

­Ur
DT

r*l

S­(ru)*l
­Ur

DT

S n
M 1 S­SM

­Ur
DT

(ru)*l 1 S­p*
­Ur

DT

nx

S­(rv)*l
­Ur

DT

S n
M 1 S­SM

­Ur
DT

(rv)*l 1 S­p*
­Ur

DT

ny

S­(rw)*l
­Ur

DT

S n
M 1 S­SM

­Ur
DT

(rw)*l 1 S­p*
­Ur

DT

nz

S­e*l
­Ur

1
­p*
­Ur

DT

S n
M 1 (e*l 1 p*) S­SM

­Ur
DT

(41)

Fortunately, these derivatives can be computed in a relatively straightforward
manner if the vectors ­SM/­Ul , ­SM/­Ur , ­p*/­Ul , and ­p*/­Ur are computed and
stored in advance. One can simplify this task by exploiting the symmetry property
of SM (12) with respect to p*. The only Ul terms which appear in p*r (38) and the
only Ur terms which appear in p*l (37) are those in SM . Hence, in each case, one
can choose to differentiate the simpler of the two expressions. The SM derivatives
are first computed from

­SM

­Ul
5 r̃213

2q 2
l 1 cl (c 2 1)/2 1 SM SL

nx (2ql 2 SL 2 SM ) 1 (1 2 c)ul

ny (2ql 2 SL 2 SM ) 1 (1 2 c)vl

nz (2ql 2 SL 2 SM ) 1 (1 2 c)wl

c 2 1

4,

(42)

­SM

­Ur
5 r̃213

q 2
r 2 cr (c 2 1)/2 2 SM SR

nx (SR 1 SM 2 2qr ) 2 (1 2 c)ur

ny (SR 1 SM 2 2qr ) 2 (1 2 c)vr

nz (SR 1 SM 2 2qr ) 2 (1 2 c)wr

1 2 c

4,

(43)

with c ; u2 1 v2 1 w2 and r̃ ; rr (SR 2 qr ) 2 rl (SL 2 ql ). Differentiating (37)
with respect to Ur and (38) with respect to Ul then gives

­p*
­Ul

5 rr (SR 2 qr )
­SM

­Ul
, (44)
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­p*
­Ur

5 rl (SL 2 ql )
­SM

­Ur
. (45)

The remaining terms in (40) and (41) are

­r*l
­Ul

5 Vl3
SL

2nx

2ny

2nz

0

41 Vl r*l
­SM

­Ul
,

(46)

­r*l
­Ur

5 Vlr*l
­SM

­Ur
, (46a)

­(ru)*l
­Ul

5 Vl3
qlul 2 nx cl (c 2 1)/2

SL 2 ql 1 nx (c 2 2)ul

2ulny 1 nx(c 2 1)vl

2ulnz 1 nx(c 2 1)wl

(1 2 c)nx

41 Vl Snx
­p*
­Ul

1 (ru)*l
­SM

­Ul
D,

(47)

­(ru)*l
­Ur

5 Vl Snx
­p*
­Ur

1 (ru)*l
­SM

­Ur
D, (48)

­(rv)*l
­Ul

5 Vl3
qlvl 2 ny cl (c 2 1)/2

2vl nx 1 ny(c 2 1)ul

SL 2 ql 1 ny(c 2 2)vl

2vlnz 1 ny(c 2 1)wl

(1 2 c)ny

41 Vl Sny
­p*
­Ul

1 (rv)*l
­SM

­Ul
D,

(49)

­(rv)*l
­Ur

5 Vl Sny
­p*
­Ur

1 (rv)*l
­SM

­Ur
D, (50)

­(rw)*l
­Ul

5 Vl3
qlwl 2 nz cl (c 2 1)/2

2wl nx 1 nz (c 2 1)ul

2wlny 1 nz(c 2 1)vl

SL 2 ql 1 nz(c 2 2)wl

(1 2 c)nz

41 Vl Snz
­p*
­Ul

1 (rw)*l
­SM

­Ul
D,

(51)
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­(rw)*l
­Ur

5 Vl Snz
­p*
­Ur

1 (rw)*l
­SM

­Ur
D, (52)

­e*l
­Ul

5 Vl3
(el 1 pl )ql/rl 2 ql cl (c 2 1)/2

2nx(el 1 pl )/rl 1 (c 2 1)ul ql

2ny(el 1 pl )/rl 1 (c 2 1)vl ql

2nz(el 1 pl )/rl 1 (c 2 1)wl ql

SL 2 qlc

41 Vl S­p*
­Ul

SM 1 (p* 1 e*l )
­SM

­Ul
D,

(53)

­e*
l

­Ur
5 Vl S­p*

­Ur
SM 1 (p* 1 e*l )

­SM

­Ur
D. (54)

In the case where S n
M , 0, the relevant Jacobians are obtained by simply interchang-

ing subscripts l } r and L } R in (46) through (54). This completes the definition
of the frozen acoustic wave-speed version of the implicit HLLC flux.

In view of the previous discussion on the various possible linearisations of the
Roe flux, the fully linearised form of the HLLC flux will also be considered for
comparison. In this case, the derivatives, ­SL/­Ul, ­SL/­Ur, ­SR/­Ul, and ­SR/­Ur

are also required. Note that the acoustic wave speeds are again only piecewise
differentiable, the appropriate function being defined by the explicitly determined
bound on the signal velocities (13). The derivatives of SM and U* above must now
be appended with the additional terms,

­SM

­Ul
5

­SM

­Ul
1 r̃21 Frr (qr 2 SM )

­SR

­Ul
2 rl(ql 2 SM )

­SL

­Ul
G, (55)

­SM

­Ur
5

­SM

­Ur
1 r̃21 Frr (qr 2 SM )

­SR

­Ur
2 rl(ql 2 SM )

­SL

­Ur
G, (56)

­p*
­Ul

5
­p*
­Ul

1 rr(SM 2 qr)
­SR

­Ul
, (57)

­p*
­Ur

5
­p*
­Ur

1 rl(SM 2 ql)
­SL

­Ur
, (58)

­U(i)*l
­Ul

5
­U(i)*l

­Ul
1 Vl (U(i)l 2 U(i)*l )

­SL

­Ul
, (59)

­U(i)*l
­Ur

5
­U(i)*l

­Ur
1 Vl (U(i)l 2 U(i)*l )

­SL

­Ur
, (60)

where U(i) denotes the ith component of vector U. Figures 10 and 15 show compari-
sons of convergence histories with the two different linearisations in a supersonic
and subsonic channel flow. Whilst there is, again, a slightly improved convergence
rate using the fully linearised HLLC flux, the extra work required per iteration
does not significantly favour this scheme over the simplified form. In view of this,
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FIG. 11. Convergence histories of deferred correction B2 schemes on supersonic bump flow.

only the simpler, frozen SL ,SR version will be considered in the remainder of this
paper. Due to the very different flux constructions in the Roe and HLLC schemes,
the simplified (frozen Jacobian) Roe and simplified (frozen SL ,SR) HLLC schemes
involve very different approximations. Therefore, all subsequent convergence his-
tories are shown in terms of work units as well as numbers of iterations. The
remaining average-state schemes require knowledge of only the acoustic wave
speeds which may be frozen in each case without loss of stability. Since the aim is
to construct the simplest unconditionally stable scheme for each flux, fully linearised
versions of the simpler average-state fluxes will not be considered here.

The implicit version of the single-state HLL flux (15) takes a particularly simple
form, upon freezing the two acoustic wave speeds, to give

F n11
HLL 5 F n

HLL 1 t n
1

­Fr

­Ur
dUr 1 t n

2
­Fl

­Ul
dUl 2 t n

3 (dUr 2 dUl), (61)

FIG. 12. Supersonic bump flow–convergence histories with SUPERBEE limiter.
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where t1 , t2 , and t3 are given by (16). The implicit Rusanov flux becomes

F n11
Rusanov 5 F n

Rusanov 1
1
2 S­Fr

­Ur
dUr 1

­Fl

­Ul
dUlD2

ulmun

2
(dUr 2 dUl ), (62)

and the implicit Lax–Friedrichs/HLF flux becomes

F n11
HLF 5 F n

HLF 1
1
2 S­Fr

­Ur
dUr 1

­Fl

­Ul
dUlD2

bDx
2Dt

(dUr 2 dUl ). (63)

The implicit flux (63) has a naturally implied frozen wave speed. However, it was
shown in Section 2 that implicit methods based on (63) are not positivity-preserving
at CFL numbers larger than b, and we will therefore not give further consideration
to either the HLF or the Lax–Friedrichs fluxes.

4. PRESENT NUMERICAL IMPLEMENTATION

4.1. Mean-Flow Equations

The starting point for the numerical scheme is a substitution of the linearised
convective flux into the backward Euler method:

JdU
Dt

5 O
k

(F v 1 F c)n11 1 JS n11
t . (64)

(F c)n11 refers to the implicit convective flux which is approximated via one of the
linearisations discussed in the previous section. The viscous flux, (F v)n11, is discre-
tised via central differences and linearised assuming the laminar viscosity and any
(effective isotropic or anisotropic) eddy viscosities are frozen. The latter approxima-
tion does not significantly restrict the allowable time-step, since diffusion tends to
be an inherently stabilising process. The source terms, S n11

t , are also treated via
central differencing. The linearisation of these terms is discussed in Section 4.2.
Once the appropriately linearised terms are substituted into (64), this can be re-
arranged into the semi-discrete form (34). In practice, we do not use backward
Euler time-stepping. A new two-step scheme is proposed in Section 4.3, which is
found to give better convergence behaviour in conjunction with higher-order
methods.

Higher-order accuracy is achieved using slope-limiting, performed either directly
on the conserved variables, or wave-by-wave. Our experience suggests that there
is little difference between reconstructions applied to either primitive or conserved
variables, provided a check is included in the latter case to exclude the possibility
of negative reconstructed pressures. The wave-by-wave (sometimes termed field-
by-field) approach decomposes the local solution into contributions from each
separate wave, and this can yield an improvement in unsteady flows, particularly
when used in conjunction with compressive limiters. In steady flows, where most
discontinuities become well separated, the advantages of a wave-by-wave approach
are less pronounced. Also, use of wave-by-wave limiting might hinder the present
comparisons, because this technique can be applied with Godunov, HLLC, or Roe-
type methods, but not with the HLL, Rusanov, or Lax–Friedrichs/HLF schemes,



61METHODS FOR COMPRESSIBLE FLOWS

since these simpler schemes do not provide information on the relative jumps across
all waves. Therefore, all higher-order results presented here were computed via
conserved-variable reconstruction, using slope-limiters such as (28) applied along
coordinate lines as in schemes (32), (33).

There is an open question regarding the optimal choice of implicit operator in
higher-order schemes. At large time-steps, discontinuities may travel further than
one cell per iteration, and Godunov’s theorem implies that a linearised implicit
scheme cannot be both monotonicity-preserving and better than first-order accurate.
Yee [36] demonstrated that one can maintain TVD solutions at arbitrary time-steps
by sacrificing conservation, and this nonconservative linearisation was, in fact, the
form adopted by Huang and Coakley [15]. Although use of the d-form (34) means
that such an approximation will not affect the steady state, Yee [38, 40] has shown
that the nonconservative linearisation can lead to convergence problems. A fully
conservative approach has therefore been adopted here, in which the left-hand-
side operator is composed only of contributions from the first-order upwind flux.
However, for physically positive quantities, realisability is enforced numerically by
the procedure described in Section 4.2.

4.2. Turbulence-Model Equations

With the addition of a turbulence model, the total energy becomes the sum of
internal, mean-flow kinetic and turbulence energy:

e 5 rei 1 r(u2 1 v2 1 w2)/2 1 rk.

Pressures, enthalpies, and all wave speeds need to be modified accordingly in both
fluxes and Jacobians. This is straightfoward in the case of any average-state scheme;
in the case of any linearised Riemann solver, the eigenvectors also have to be
modified to account for the contribution of k to the total energy (see, for example,
Barakos and Drikakis [3]). The convective fluxes of any conserved, transported
quantity, rf, in the case of HLL, Rusanov, or HLF, extend trivially from the original
definitions. The HLLC flux for rf is again given by (6), where F*l , F*r are obtained
from the conservation laws as

F*l (rf) 5 r*l fl SM , F*r (rf) 5 r*r fr SM .

The present code is currently being used to validate a range of different turbulence
models, including full Reynolds-stress closures. Therefore, a numerical framework
has been adopted in which different turbulence models can be easily inserted
and modified. Specifically, a fully coupled treatment of the turbulence variables is
deliberately avoided. Instead, an uncoupled, implicit equation for any turbulence-
related quantity, rf, is derived by considering only diagonal components of the
convective, diffusive, and source-term Jacobians. In the case of HLLC, the convec-
tion coefficients which contribute to the implicit equation for rf are

­F(rf)HLLC

­(rf)l
5 max FF(r)HLLC

rl
, 0G, (65)
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­F(rf)HLLC

­(rf)r
5 min FF(r)HLLC

rr
, 0G. (66)

Although the turbulence energy can have a weak influence on the mass flux,
F(r)HLLC, this has been ignored in the implicit part of the operator. This approxima-
tion does not affect the converged solution because of the use of the d-form (34).

Since the higher-order, deferred-correction approach is not necessarily TVD,
there is no guarantee that quantities such as turbulence energy will remain positive.
Although this procedure cannot guarantee bounded solutions for f for arbitrary
time-steps, the weaker, but sufficient condition of positivity-preservation can be
achieved for any transported quantity by splitting both convective and diffusive
fluxes into

F 5 FImplicit 1 FCorrection ,

where FImplicit corresponds to the implicitly treated portion of the fluxes and FCorrection

corresponds to any explicitly treated additions. The sum of the flux corrections are
treated as a source term and are linearised via the following approach, due to
Patankar [27]. The uncoupled, implicit equation for any conserved scalar quantity,
rf, may be written as

J[(rf)n11 2 (rf)n]
Dt

2 O f n11ds 5 Jst 1 sc ,

where o f n11 ds denotes the sum of all implicitly discretised fluxes (including diffu-
sion and convection terms), st are the source terms arising from the turbulence
model, and sc represents the sources from any deferred-corrections.

Linearising convective and diffusive fluxes and splitting all sources into positive
and negative contributions gives

F J
Dt

2 O ­f
­(rf)G d(rf) 5 O f n 1 J[s1

t 1 s2
t ] 1 s1

c 1 s2
c .

Positive source terms are treated explicitly, whilst negative contributions are scaled
by (rf)n11/(rf)n and moved to the left-hand side of the equations. Introducing a
small positive constant, « 5 10240, to prevent division by zero gives

F J
Dt

2 O ­f
­(rf)G d(rf) 2 F Js2

t 1 s2
c

(rf)n 1 «
G (rf)n11 5 O f n 1 Js1

t 1 s1
c . (67)

To retain the d form, the term F Js2
t 1 s2

c

(rf)n 1 «
G (rf)n is added to both sides of

Eq. (67) to give

F J
Dt

2 O ­f
­(rf)

2
Js2

t 1 s2
c

(rf)n 1 «
G d(rf) 5 O f n 1 Js1

t 1 s1
c 1 F Js2

t 1 s2
c

(rf)n 1 «
G (rf)n. (68)
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In the above form, all flux balance and source terms appear on the right-hand side.
However, the small parameter, «, also appears in the denominator of the s2 terms
on both left- and right-hand sides of the equation. One might expect that the (rf)n

terms on the right-hand side could be cancelled by ignoring this small parameter.
However, since it is possible for f R 0, this term cannot be ignored, since
(rf)n , « will again lead to small negative values of f in subsequent iterations.

The above procedure has no effect on the converged solution, but it ensures that
positivity is preserved on relevant data, such as the normal stresses, turbulence
energy, and dissipation rate, even if the turbulence model itself is not strictly
realisable. For the test cases considered here, no such procedure was found necessary
on any mean-flow equation. In this case, the deferred-correction terms, ok FCorrection ,
were simply treated explicitly.

4.3. A Two-Step Time-Integration Method

The use of compressive or moderately compressive limiter functions can often
create a flip-flop effect at alternate time steps, which prevents convergence to
machine zero. This effect is not associated with physical unsteadiness or turbulence,
but is due to the artificial nonlinearity specifically introduced into the discretised
convective term to circumvent Godunov’s theorem [11] which states that no fixed-
stencil scheme can be both monotone and better than first-order accurate.

To improve the convergence behaviour without resorting to more diffusive limit-
ers, a new implicit, temporally first-order scheme has been developed which is
subsequently denoted B2:

U n11 5 U n 1
Dt
2J SOk F n11/2 1 O

k
F n13/2D (69)

In regions containing any residual flip-flop effect due to limiter functions, scheme
(69) introduces a strong dissipation via the temporal operator. Note that if the
backward Euler and B2 schemes both converge to o F n 5 0, then both converge
to the same solution, and the B2 scheme introduces no additional dissipation in
the final solution.

The B2 scheme (69) can be implemented as a trivial modification to the backward
Euler method and requires no additional storage. Denoting the backward Euler
update by

dU 5 B1(U n, Dt),

(70)U n11 5 U n 1 dU,

the B2 scheme (69) can be implemented via the following two successive backward
Euler steps:

dU 5 B1(U n, Dt/2),

(71)U 5 U n 1 dU,
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FIG. 13. Supersonic bump flow–convergence histories with van Leer limiter.

dŨ 5 B1(U, Dt),

(72)U n11 5 U 1 dŨ/2.

Figures 12 and 13 show the convergence history for a Mach 1.4 inviscid bump
flow (Fig. 9) using the SUPERBEE limiter of Roe and harmonic-mean limiter of
van Leer, with various explicit and implicit HLLC schemes. Residuals are also
shown versus work units, corresponding to seconds of CPU time on an SGI Indigo
2, R4400 processor. Here, the residual is the normalised sum of the absolute
u-momentum flux imbalances.

The explicit Runge–Kutta scheme (32), (33) was applied with a constant local
CFL number of 0.6, whilst both implicit schemes used a constant local CFL number
of 106. It is clear that SUPERBEE causes convergence problems, and this effect
has been reported previously by Huang and Coakley [15] who used an implicit
Roe scheme. Although none of these SUPERBEE schemes allows convergence to
machine zero, the residuals in the B2 scheme are reduced by an additional two
orders of magnitude, in comparison with the backward Euler scheme. Even during
the early stages of the calculation with van Leer’s limiter, where the residuals of
the backward Euler method are dropping quite rapidly, the residuals of the B2
scheme reduce at about twice that rate. The B2 scheme converges to 10210, whilst the
residuals of the backward Euler and explicit Runge–Kutta schemes both stagnate at
around 1023. This can often be avoided by using a more diffusive limiter such as
MinMod, or by adding fourth-order dissipation or down-wind weighting factors,
but the effect of all these approaches is to add dissipation indiscriminately, which
inevitably pollutes the final steady-state solution.

The damping in the B2 scheme relates only to the Nyquist frequency associated
with the flip-flop of the solution in alternate time-steps; hence a periodic fluctuation
at a lower frequency due to error or physical unsteadiness will not necessarily be
suppressed. For linear problems, the B2 scheme reduces to the backward Euler
scheme.

Whilst the B2 scheme does not cure the underlying cause of convergence difficul-
ties with compressive limiters, it does help to alleviate the symptoms. It is important
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to highlight the fact that the residual reported here is the total sum of all absolute
u-momentum flux imbalances and not simply the maximum (or average) change in
a particular variable. Hence, there is a genuine benefit in terms of the reduction
in the level of error achieved in the steady-state discretisation. The flux-imbalance
sum also provides a more reliable measure of convergence, because of the possibility
of generating spurious steady-state solutions (see Yee and Sweby [41]). In subse-
quent convergence histories, one iteration is taken to mean one complete backward
Euler step or one complete B2 step. Since one B2 iteration involves twice as much
effort as one backward Euler iteration, residuals are also shown versus work units.
In Section 5, the backward Euler and B2 methods are used to evaluate the relative
performance of the various implicit average-state Jacobian schemes on several
different test cases.

4.4. Boundary Conditions

Implicit schemes can encounter a restrictive CFL-like condition if boundary
conditions are not treated in a fully implicit fashion. In the present numerical
framework, boundary conditions in both explicit and implicit portions of the scheme
are treated consistently by imposing ‘‘ghost’’ cells outside the domain. Supersonic
inflow and outflow boundaries are treated by fixing and extrapolating all quantities,
respectively. Subsonic inflow boundaries are treated either via Riemann invariants
[16] or via a reservoir condition in which total temperature and pressure are speci-
fied. Subsonic outflow boundaries are treated by imposing a back-pressure, with
velocities and temperatures extrapolated. Once the relevant explicit boundary con-
ditions are set on the right-hand side of (34), the equation for any node, i, which
falls adjacent to a ghost volume, l, becomes

SDt
J

2 O
k

­F
­Ui

2 J
­St

­Ui
D dUi 2 O

k,k?l

­F
­Uk

dUk 2
­F
­Ul

dUl 5 O
k

F n 1 JS n
t . (73)

An implicit relation is then established between the ghost data and the physical
data in the interior. This is achieved by constructing a matrix, C, where

dUl 5 CdUi . (74)

Substituting CdUi into (73) eliminates node l from the set of equations, leaving the
boundary flux determined implicitly in terms of the interior nodes and the specified
relation (74). For example, at an adiabatic wall, C 5 Diag[1, 21, 21, 21, 1, ...],
whilst for a supersonic inlet or outlet, C 5 aI, where a 5 0 or 1, respectively.
Symmetry, subsonic inlet/outlet and isothermal wall boundary conditions are slightly
more involved, since C becomes less sparse, but otherwise these boundaries are
treated in an identical fashion. Higher-order boundary conditions can be imple-
mented by deriving an implicit relation between the ghost node and two or more
interior nodes.

The solution to the resulting system of equations is obtained via line-relaxation,
using Chakravarthy’s block-tridiagonal solver, NBTRIP (see the appendix of [2]).
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To minimise storage, the Jacobians are recomputed line-by-line as needed. Since
the construction of the Jacobians and the block-inversion routine is quite costly,
an accurate solution of the linearised system is not attempted. Instead, only one
sweep through each set of coordinate lines is performed at each time step. The
CFL number is typically increased from an initial value close to unity at a rate of
around 1.2 per step.

5. RESULTS AND CONVERGENCE HISTORIES

5.1. Rationale for Selected Test Cases

The main aim of the paper has been to devise implicit methods suitable for steady
laminar or quasi-steady turbulent viscous flow. Whilst it has been argued that the
property of exact resolution of contact and shear waves is important in viscous
flow, the schemes which exhibit this property tend to be the most expensive to
implement. It is instructive, therefore, to examine the various possible approaches
with regard to accuracy, convergence rate and overall CPU cost.

The schemes are applied to five test cases, namely: subsonic and supersonic
inviscid channel flow, low speed flow over a sphere, high-speed flow over a cylinder,
and turbulent, transonic flow in a channel. These cases together feature a wide
range of physical conditions, including massive subsonic separation, shock reflection,
shock/boundary-layer interaction, and strong, curved bow shocks provoked by cylin-
drical obstructions in hypersonic flow.

5.2. Supersonic Channel Flow

The first example is that of inviscid flow at Mach 1.4 over a 4% circular arc bump
in a channel (Fig. 9). The mesh used was 90 3 30, and the residual was taken
throughout as the normalised flux-imbalance sum of the u-momentum equation. A
constant CFL number of one million was used in all cases, except in those deferred-
correction calculations which used the fully linearised Roe and HLLC fluxes. These
calculations were found to be unstable at very large initial CFL numbers. Therefore,
in these two cases, the CFL number was raised from 102 to 106 at a rate of 1.2
per iteration.

Figure 10 shows convergence histories computed with the first-order upwind
schemes using backward Euler time-stepping. This can be considered as a Newton
method for the fully linearised flux schemes. Despite using just a single alternating
line-relaxation sweep, all schemes exhibit a rapid convergence to 10210. Both the
fully linearised schemes converge slightly faster than the simplified frozen Jacobian
Roe scheme and frozen acoustic wave speed HLLC scheme. Although the fully
linearised Roe scheme converges faster than the frozen Jacobian scheme, the cost
per iteration of the former outweighs the savings gained by the reduction in the
number of iterations. It is interesting to note the closely similar convergence histories
obtained by both fully linearised Roe and HLLC schemes (left plot in Fig. 10).

Figure 11 shows convergence histories for the same case using the various higher-
order, deferred-correction schemes. Again, the fully linearised forms show an im-
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FIG. 14. Mach contours for Mach 0.85 circular-arc bump flow (HLLC).

proved convergence rate, but this does not have a significant impact on the overall
CPU time required. The fully linearised Roe scheme is amongst the slowest of the
schemes examined with respect to CPU time, despite having one of the fastest
convergence rates. The implicit HLL scheme requires almost double the number
of iterations used by the HLLC/Roe schemes, whilst the Rusanov scheme fails to
depress the residuals below 1026.

5.3. Subsonic Channel Flow

Figures 14 to 16 show results for the GAMM test case of inviscid subsonic flow
at Mach 0.85 over a 4.2% circular-arc bump in a channel with height 2.073 times
the chord length. The mesh used was 99 3 34, and a constant CFL number of 50
was adopted in all cases. In both first- and second-order calculations, the frozen-
Jacobian Roe scheme required the least number of iterations, and its convergence
in terms of overall CPU time was almost identical to the frozen acoustic-speed
HLLC scheme. The fully linearised form of Roe’s scheme again showed no overall
advantage, despite its rapid convergence rate. For the higher-order calculations
(see Fig. 16), the fully linearised HLLC scheme was, overall, slightly slower than
the simplified HLLC and Roe schemes. The Rusanov scheme displays a smoother
convergence history than HLL, probably due to the damping of the upstream-
moving acoustic waves. This feature sometimes helps improve convergence, but
also causes the Rusanov scheme to give poorer resolution of stationary shock waves.

FIG. 15. Convergence histories of first-order backward Euler schemes on subsonic bump flow.
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FIG. 16. Convergence histories of deferred correction B2 schemes on subsonic bump flow.

5.4. Low-Speed Flow over a Sphere

Figures 17 to 19 show results for the flow over a sphere at various Reynolds
numbers. All these flows are essentially incompressible and were therefore solved
at Mach 0.2, using B2 time-stepping with a constant local time-step corresponding
to an inviscid CFL number of 200 in each cell (the backward Euler scheme failed
to converge by even one order of magnitude at these conditions). The term ‘‘inviscid
CFL number’’ here implies that the time-step is constrained only by the mesh-
spacing and the fastest acoustic velocity. Source term and viscosity effects are not
included in the calculation of the time-step, as such restrictions are not found
necessary for the stability of the present implicit scheme.

A grid composed of 128 3 200 3 2 mesh points was generated by rotating a
clustered two-dimensional mesh through a small angle, u 5 1022 Radians. This
resulted in a wedge-shaped three-dimensional mesh, in which symmetry conditions

FIG. 17. Particle traces for sphere flow at Reynolds number 200.
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FIG. 18. Separation angle (left) and wake length (right) versus Reynolds number for low-speed
sphere flow.

were imposed on its two azimuthal faces. The symmetry axis implies zero flux on
the lower boundary, since the area of the cell face normal to the axis vanishes on
the axis itself. The surface of the sphere was taken as an adiabatic wall boundary.
At the outer boundary, 37 radii removed from the centre of the sphere, a general
boundary procedure was used, in which either Riemann invariant subsonic-inflow
boundary conditions or fixed back-pressure outflow boundary conditions were im-
posed, according to the local characteristic count at that boundary. All boundary
conditions, including the symmetry boundaries on the sides of the wedge, were
treated implicitly.

Figure 17 shows particle traces obtained from the HLLC solution of the sphere
flow at a Reynolds number of 200. Figure 18 shows the present predictions of wake-
length and separation angle, measured in degrees around the sphere. Up to a
Reynolds number of 100, good agreement is obtained between the predictions of
the present HLLC scheme, the predictions of Rimon and Cheng [29], and the
experimental results of Taneda, also given in [29]. The predictions obtained with
the HLLC, exact Riemann solver, and Roe fluxes were identical to at least two
significant digits for all cases. The HLL and Rusanov schemes predicted a marginal
decrease in the wake length (not shown). The separation angles computed by Chang
et al. [5] show a slight deviation from the other three results in Fig. 18. According
to Taneda [29], a Reynolds number of 130 is roughly the point at which the wake
becomes unsteady. There are therefore no experimental data available for the
wake length above this Reynolds number, and for these cases there is a significant
deviation amongst the computed predictions. The present computations cannot, of
course, resolve unsteady shedding because of the axi-symmetry condition imposed.

Figure 19 shows the convergence histories for the flow at Reynolds number 200,
using the various implicit schemes. At these low Reynolds numbers, all schemes
which exactly preserve isolated contact/shear-waves display closely similar conver-
gence rates, probably because the convergence is dominated by the (identical)
implicit treatment of the viscous terms. The scheme with frozen acoustic wave
speeds HLLC converges in just one iteration less than the frozen-Jacobian Roe
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FIG. 19. Convergence histories of deferred correction B2 schemes on sphere flow at Re 5 200.

scheme. The HLL and Rusanov schemes both take significantly longer to converge,
both in terms of iterations and overall CPU time.

5.5. Hypersonic Flow over a Circular Cylinder

Figures 20 to 22 show computations of a Mach 5.7 flow over a circular cylinder
at Reynolds number 16500, based on cylinder diameter, and total temperature
and pressure of 300K and 95KPa, respectively. Experimental results produced by
McCarthy and Kubota [23] suggest that the flow, including the wake, is laminar at
these conditions; hence, no turbulence model was employed in the calculations.
The flow was treated as a perfect gas and computed over the full cylinder, with no
imposed symmetries.

FIG. 20. Hypersonic cylinder flow. Schlieren image showing particle traces computed with deferred
correction HLLC scheme on 480 3 200 mesh (left) and Mach contours computed with first-order HLLC
scheme on 240 3 200 mesh (right).
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FIG. 21. Hypersonic cylinder flow. Mach contours computed with first-order HLL scheme (left),
and Rusanov scheme (right) using 240 3 200 mesh.

The mesh comprised of 240 points in the circumferential and 200 points in the
radial directions, and the outer boundary, also treated via a general implicit condi-
tion based on the locally computed characteristics, was placed at seven radii away
from the centre of the cylinder. The CFL number was raised from 1.0 to 106 at a
rate of 1.02 per step. All deferred-correction schemes failed to converge more than
two orders of magnitude on this test case. Convergence of the higher-order schemes
also stalled on a 480 3 200 grid, and there may be some question as to whether
the wake is truly steady. The convergence histories presented for this case were all
computed using the first-order upwind schemes, although results of a second-order
computation on a 480 3 200 mesh are also shown. This case proved an exception
to the generally observed convergence trends, with the most diffusive scheme (Rusa-
nov) displaying a convergence rate almost as rapid as that of HLLC and requiring
the least overall CPU time.

FIG. 22. Convergence histories of first-order B2 schemes on hypersonic cylinder flow.
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Despite the gradually increased CFL number, Roe’s scheme failed in the first
few steps, giving negative pressures in the wake. This occurred for arbitrarily small
CFL numbers, and it therefore proved necessary to clip these negative pressures
and densities to some small positive value (see Yee et al. [40]). It was further found
necessary to restrict the local CFL number in the Roe scheme to about 3 to prevent
the solution from diverging. Even at a maximum local CFL number of 3, the Roe
scheme failed to converge and produced a carbuncle on the bow shock which
pulsated indefinitely at a regular frequency.

Whilst certain problems with Roe’s scheme, such as the generation of expansion
shocks and negative pressures, can be traced directly to inappropriate physical
modelling (i.e., the underestimation of the true expansion-wave velocity), it is still
basically unclear why Roe’s scheme suffers so badly from the above type of instabil-
ity. Note that both the HLLC and unmodified Roe schemes represent the internal
structure of the Riemann fan as two integral-average states, and both share the
property of the exact Riemann solver of isolated discontinuities being preserved
exactly. We do not believe, therefore, that this effect is due to any lower levels of
dissipation or greater accuracy in Roe’s scheme. The results computed with an
exact Riemann solver (not shown) did not exhibit this pulsating-carbuncle effect
and were indistinguishable from the results computed with the HLLC scheme. The
solutions generated with Roe’s scheme were observed to be sensitive to CFL, grid,
and also initial conditions. Hence, it is possible that this pulsation could be avoided
by suitably adjusting one or all of these numerical parameters. Alternatively, entropy
corrections can be employed in Roe’s scheme which involve modifying the linear
eigenvalue to be some function of the maximum modulus eigenvalue (see, for
example, Yee et al. [40]). This correction is, in effect, just a convenient way of
adding extra artificial viscosity to Roe’s scheme and has no physical justification.
Such a modification to the linear eigenvalue will destroy the conservation property
of fluctuation-splitting schemes [31] and will also destroy the ability of any linearised
scheme to exactly preserve isolated contact and shear waves. In addition to introduc-
ing artificial diffusion through boundary layers, this deficiency has been shown here
to delay convergence of implicit schemes, even in inviscid flow.

5.6. Transonic Turbulent Flow over a Bump

This test case involves turbulent shock-induced separation in a transonic flow
over a bump in a channel (Délery [8, case C]). In the experiments, high-pressure
gas was supplied through a reservoir upstream, and the shock position was controlled
by an adjustable throat downstream of the bump. In the present computations, we
follow earlier calculations in the European Validation Exercise for Aerodynamic
Flows [13] in adjusting the shock location by controlling the back-pressure on the
outflow boundary. The inlet boundary condition was treated by assuming a fully
developed turbulent boundary layer on both upper and lower walls of the channel.
The flow properties through the boundary layer were specified by imposing a
Musker profile, corrected for compressibility effects [12], such that both boundary
layers were 3% of the channel height at the inlet. These quantities were used
to specify the inlet conditions needed for the Riemann invariant subsonic-inflow
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FIG. 23. Délery’s case C—Mach contours showing close-up of shock/boundary-layer interaction
region computed with HLLC scheme and cubic eddy-viscosity model (left) and boundary-layer velocity
profiles upstream of the interaction region, x 5 0.232 m (right).

procedure. Alternatively, this case may be run using reservoir inlet conditions, in
which only the total pressure and temperature are specified, and the velocity profile
at the inlet is allowed to develop as part of the solution. Due to the rapid acceleration
of the flow over the bump, the two approaches do not result in significant differences
in the thickness of the boundary layer just prior to the shock-interaction region,
and no major differences have been observed between the two types of inflow-
boundary treatment. The stagnation pressure and temperature in the plenum were
96 KPa and 300 K, respectively, and the back pressure was fixed at 91 KPa for all
cases. This results in an incoming Mach number of about 0.615 and a Reynolds
number of approximately 107 per metre. Extensive details of this test case may be
found in Loyau and Vandromme’s summary of the ETMA workshop [22] and in
Leschziner et al. [19].

A 120 3 120 grid was used, with grid independence being confirmed by further
computations on a 220 3 220 grid. Both grids were clustered to give y1 # 0.5 for
the first cell-centroids off both walls resulting in cell-aspect ratios on the 120 3 120
mesh ranging from about 500 near the interaction region, to around 6000 near the
inflow boundary. All computations were carried out using the deferred-correction
scheme with van Leer’s limiter, at an inviscid CFL number that was increased from
1 to 100 at a rate of 1.2 per iteration. The turbulence model used was the low-
Reynolds-number, nonlinear (cubic) eddy-viscosity model proposed by Lien et al.
[20], which gives, in incompressible separated flow, results that are superior to
linear k-« models.

This flow is characterised by a strong acceleration to supersonic conditions, fol-
lowed by a deceleration through a lambda-shock structure on the trailing edge of
the bump. This feature is just visible in the left plot of Fig. 23. The initial impingement
of the shock wave on the boundary layer induces an extended separation region
behind the bump, effectively displacing the downstream boundary layer and
strengthening the second leg of the lambda-shock where the flow finally decelerates
to subsonic conditions. The separation bubble gives rise to the characteristic pressure
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FIG. 24. Wall-pressure distributions for Dèlery’s case C.

plateau shown by the experimental data on the right plot of Fig. 24. Although there
are some discrepancies between experiment and all calculations, the nonlinear eddy-
viscosity model shows better agreement than a conventional linear eddy-viscosity
model, which is here the model of Launder and Sharma [18], held to be the best
low-Reynolds-number k-« linear variant.

The difference in the level of numerical diffusion for the same 120 3 120 mesh
is apparent in the right plot of Fig. 23, where the HLL scheme shows a noticeably
thicker boundary-layer profile (similar observations apply to the Rusanov flux). In
turn, this affects turbulence generation near the wall, resulting in lower levels of
eddy viscosity in the shear layer, fortuitously compensated by an excessive artificial
dissipation. In theory, the HLL and Rusanov results ought to improve with the
addition of more mesh points normal to the wall and/or the use of a more compres-
sive limiter. However, even with the B2 time-stepping, both schemes here failed
to reduce the residual by even one order of magnitude (see Fig. 25).

The contamination of boundary layers by artificial dissipation was recognised in
artificial-viscosity schemes [1, 24] and early flux-vector splitting schemes [35], none
of which could preserve isolated contacts or shear waves. The fact that certain

FIG. 25. Convergence histories for Délery’s case C.
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schemes ignore the contact wave in their explicit formulations, implies that the
corresponding details must also be missing from their Jacobians. These waves will
not, therefore, be correctly propagated at Courant numbers larger than unity,
and the consequences are excessive dissipation of boundary layers and delayed
convergence. A further difficulty is encountered when turbulence-transport models
are employed. The additional transport equations rely on the convective-flux model
to faithfully carry the turbulence parameters from the inlet to the point at which
the local flow physics becomes dominated by production, dissipation, or diffusion
through the shear-layer. The omission of the contact wave means an inaccurate
transport of the turbulence quantities. Although remedies may be devised—based,
for example, on artificially reducing dissipation via user-tunable parameters or
modified flux models for transported scalars—the general benefit of such an ap-
proach is uncertain and potentially costly.

6. CONCLUSIONS

A number of new implicit schemes based on average-state flux Jacobians have
been proposed. The convergence histories of these implicit schemes consistently
show an improved convergence rate when more physical detail of the Riemann fan
is included in the closed-form approximation to the flux and its Jacobian. This is
not an entirely obvious conclusion, since one might have expected simple closed-
form approximate solutions to converge (albeit to a less accurate solution) in less
CPU time, purely by virtue of the reduced number of floating-point operations.
Our experience suggests this is generally not the case. The schemes containing
more detailed physics not only give more accurate solutions, but also tend to yield
faster overall convergence.

The convergence rates of the HLLC scheme with frozen acoustic wave speeds
and the frozen Jacobian Roe scheme are closely comparable. The slight differences
that do arise are attributed to the different approximations which have been made
to simplify the Jacobians. These differences are necessitated by the very different
construction of the two methods. Although there is no dramatic difference in CPU
times between the two simplified forms, the fully linearised HLLC scheme is faster
by at least a factor of two (per iteration) relative to the fully linearised Roe scheme.
This might be significant for Newton-type methods, since both fully linearised
schemes display an otherwise closely similar convergence rate.

It has been shown that the space-time and FORCE schemes can be considered
as average-state schemes on nonstaggered meshes using a particular flux which was
named ‘‘HLF.’’ However, the HLF scheme is not practical for use in an implicit
method, as it is not bounded above a CFL number of 0.5. A similar CFL restriction
is expected to carry over to implicit FORCE and space-time schemes. The HLF,
FORCE, and space-time schemes are remarkably accurate for explicit calculations
of the unsteady Euler equations, but none appears well-suited to Navier–Stokes
computations because none can exactly preserve isolated contacts or shear waves.
Although the underlying monotone method in the space-time scheme can be consid-
ered as being at the lower end of the current Riemann-solver hierarchy, the method
of obtaining higher-order accuracy developed by Chang [6] appears to be superior
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to most existing two-step explicit, co-located-storage MUSCL schemes and may be
worth pursuing further.

The property of exact preservation of isolated contact and shear waves has been
argued to be an important attribute of a convective-flux model. This property
prevents contamination of the boundary layer via artificial diffusion and also leads
to improved convergence rates of implicit schemes, even in inviscid flow. The exact
Riemann solver, HLLC, and (unmodified) Roe fluxes are all capable of preserving
isolated discontinuities exactly, and all should be capable of giving respectable
solutions to laminar and turbulent viscous-flow problems. However, no entropy
correction was included in the present calculations using the implicit Roe scheme,
and this unmodified Roe scheme is clearly not satisfactory. Some form of correction
would be required, in general, but this would be likely to increase both the required
number of iterations and the overall CPU time.

Due to the positivity-preserving property of the HLLC flux [4] and the fact
that the entropy condition is strongly enforced without the need for additional
modifications, the implicit HLLC scheme would seem to be a promising method
for compressible viscous flow. It should be noted that positivity-preservation will not
be guaranteed for any of these implicit schemes (even first-order upwind variants)
operating at an infinite time step, because interacting waves may create signal
velocities larger than those estimated in the initial computation of the fluxes and
their respective Jacobians. In practice, if one marches gradually towards an infinite
CFL number, there is some evidence that these average-state schemes will be more
robust than conventional, linearised implicit schemes which can fail well within the
explicit CFL limit.

In view of the improved accuracy and reduced CPU time displayed by the more
sophisticated one-dimensional flux models, further improvement might be antici-
pated from the use of genuinely multidimensional upwind schemes, particularly in
situations where shear layers or wakes are not well aligned with the grid. The
fluctuation-splitting approach (based on a reformulation of Roe’s linearised upwind
scheme [31]) appears to be the simplest route currently available to achieving
genuinely multidimensional upwind methods [26]. It is rather unfortunate that this
approach tends to be amongst the least reliable of existing one-dimensional/grid-
aligned upwind methods. A genuinely multidimensional, positively conservative
scheme for nonlinear systems continues, therefore, to be an elusive goal.
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